73,859 research outputs found

    Quasar Microlensing: when compact masses mimic smooth matter

    Full text link
    The magnification induced by gravitational microlensing is sensitive to the size of a source relative to the Einstein radius, the natural microlensing scale length. This paper investigates the effect of source size in the case where the microlensing masses are distributed with a bimodal mass function, with solar mass stars representing the normal stellar masses, and smaller masses (down to 8.5×1058.5\times 10^{-5}M_\odot) representing a dark matter component. It is found that there exists a critical regime where the dark matter is initially seen as individual compact masses, but with an increasing source size the compact dark matter acts as a smooth mass component. This study reveals that interpretation of microlensing light curves, especially claims of small mass dark matter lenses embedded in an overall stellar population, must consider the important influence of the size of the source.Comment: 6 pages, to appear in ApJ. As ever, quality of figures reduce

    Benchmark experiments with global climate models applicable to extra-solar gas giant planets in the shallow atmosphere approximation

    Get PDF
    The growing field of exoplanetary atmospheric modelling has seen little work on standardised benchmark tests for its models, limiting understanding of the dependence of results on specific models and conditions. With spatially resolved observations as yet difficult to obtain, such a test is invaluable. Although an intercomparison test for models of tidally locked gas giant planets has previously been suggested and carried out, the data provided were limited in terms of comparability. Here, the shallow PUMA model is subjected to such a test, and detailed statistics produced to facilitate comparison, with both time means and the associated standard deviations displayed, removing the time dependence and providing a measure of the variability. Model runs have been analysed to determine the variability between resolutions, and the effect of resolution on the energy spectra studied. Superrotation is a robust and reproducible feature at all resolutions

    IGDS/TRAP Interface Program (ITIP). Detailed Design Specification (DDS)

    Get PDF
    The software modules which comprise the IGDS/TRAP Interface Program are described. A hierarchical input processing output (HIPO) chart for each user command is given. The description consists of: (1) function of the user command; (2) calling sequence; (3) moduls which call this use command; (4) modules called by this user command; (5) IGDS commands used by this user command; and (6) local usage of global registers. Each HIPO contains the principal functions performed within the module. Also included with each function are a list of the inputs which may be required to perform the function and a list of the outputs which may be created as a result of performing the function
    corecore